

Skywire​®​ Nano NL-SW-LTE-NRF9160
AWS IoT with TLS
NimbeLink Corp
Updated: August 2020

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 1

Table of Contents
Table of Contents 2

Introduction 3
Overview 3
Orderable Parts 3
Disclaimer 3

AWS IoT Setup 5
Preliminary Setup 5
Create a Policy 5
Create a "Thing" 6
Generate Certificates 8
Attach the Policy to the "Thing" 9

Skywire Configuration 10
Prerequisites 10
Uploading Certificates 10

Certificate Uploading Using a Linux Environment 10
Certificate Uploading Using a Windows Environment 11

Verifying the Certificate Uploads 12
TLS Profile Configuration 12

Connect to Amazon AWS 13
Connect to AWS Endpoint 13
Sending an HTTPS Request 14
Reading an HTTPS Response 16
Closing a TLS Socket 16

Working Example: AWS IoT 17
Set Up 17
Communication 18

Troubleshooting 21
HTTP Response Codes 21

403 Forbidden 21
400 Bad Request 21
404 Not Found 21

Verify Credentials 21
Testing AWS Credentials using OpenSSL 21

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 2

1. Introduction
1.1 Overview
This document serves as a guide for Amazon AWS IoT connections using the
NimbeLink 4G CAT M1 NRF9160 Nano Skywire. AWS IoT requires Transport Layer
Security (​TLS​) for device connections. This tutorial will document the configuration of
the modem and the Amazon AWS settings, and will demonstrate two different
connection examples.

1.2 Orderable Parts

Orderable Device Description Carrier Network Type

NL-SW-LTE-NRF9160 4G LTE CAT M1 AT&T, Verizon LTE

1.3 Disclaimer
Please note that the NL-SWN-LTE-NRF9160's built-in TLS stack does not support
server name indication (SNI). SNI is a TLS extension where the client indicates the
hostname it is trying to connect to as part of the TLS handshake. For more information,
please see: ​https://tools.ietf.org/html/rfc6066
When using the modem's built-in TLS stack, your endpoint must not require SNI for a
successful TLS connection. If your endpoint requires SNI, you will need to run your own
SSL/TLS stack on your host processor and use the NL-SWN-LTE-NRF9160's TCP
sockets. For example, mbed TLS (​https://tls.mbed.org/​) and wolfSSL
(​https://www.wolfssl.com/​) are two external TLS stacks. See
https://en.wikipedia.org/wiki/Comparison_of_TLS_implementations​ for more
alternatives. NimbeLink does not provide support for integrating these embedded
libraries into your host platform.
Alternatively, a proxy server could be set up that does not require SNI, but can
communicate with the server that does. NimbeLink does not provide support for setting
this up.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 3

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://tools.ietf.org/html/rfc6066
https://tls.mbed.org/
https://www.wolfssl.com/
https://en.wikipedia.org/wiki/Comparison_of_TLS_implementations

2. AWS IoT Setup
2.1 Preliminary Setup
Before starting, it is important to note that this guide assumes that the reader already
has a valid Amazon AWS account. If this is not the case, Amazon offers a free trial
account that can be used to test this guide. For more information about the free
account, please follow this link:
https://aws.amazon.com/free/

2.2 Create a Policy
The first step in the AWS connection process is to create a policy. Login to the AWS IoT
console at the following link:

https://console.aws.amazon.com/iot/

and navigate to the 'Secure' > 'Policies' menu. Once there, press the “Create a policy"
button located near the center of the screen.

In the next page, choose a name (1.1) for the policy. Also choose “iot:*" for the “Action"
(1.2) and “*" for the “Resource ARN" (1.2) fields. Check the “Allow" box (1.2), and then
click "Add Statement". Finally, click "Create" (1.3) to create the policy. Refer to the
image below.

Warning: This policy is very permissive, and AWS recommends following a least
permissive approach to policies. Example policies that follow this practice can be found
at the following resources if you’re interested in learning more:

HTTP:
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-rest-api.html?ic
mpid=docs_iot_console

MQTT:
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html?icmpi
d=docs_iot_console

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 4

https://aws.amazon.com/free/
https://console.aws.amazon.com/iot/
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-rest-api.html?icmpid=docs_iot_console
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-rest-api.html?icmpid=docs_iot_console
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html?icmpid=docs_iot_console
https://docs.aws.amazon.com/iot/latest/developerguide/device-shadow-mqtt.html?icmpid=docs_iot_console

Figure 1. Create a Policy

2.3 Create a "Thing"
Next, navigate to 'Manage' > 'Things' (2.1) using the menu on the left-hand side of the
dashboard. Next, select ‘Create’ (2.2) in the top right corner to make a new “thing".
Refer to the image below for reference.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 5

Figure 2. Thing Management Page
After pressing the “Create" button (2.2), select the “Create a single thing" option in the
next page that loads. In the following page, enter a custom name in the appropriate box
(3.1), and then press the “Next" button (3.2). The webpage should look something like
this:

Figure 3. Creating a Thing

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 6

2.4 Generate Certificates
After pressing the “Next" button (3.2), select the “Create certificate" option in the next
web page that loads. Amazon AWS will then generate a client certificate, private key,
and a public key for the “thing" that was just created. Download these certificates (4.1)
and save them in a convenient place. Also, be sure to download the Amazon AWS CA
certificate (4.2) as this will be needed for the TLS connection.

Next, press the “Activate" button (4.3) to assign the generated certificates to the “thing".
Finally, click “Attach a policy" (4.4) to proceed to the next step. Refer to the image below
for reference.

Figure 4. Creating Certificates

Note:​ The public and private key can only be downloaded from this page. Once this
page is navigated away from, these files will no longer be available for download.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 7

2.5 Attach the Policy to the "Thing"
After advancing to the next page, attach the policy (5.1) created in ​Section 2.2​ to the
“thing" created in ​Section 2.3​ and click “Register Thing” (5.2). Refer to the image below
as an example.

Figure 5. Attaching Policy to Thing

After each of the steps in ​Section 2​ have been completed, proceed to ​Section 3​ for the
Skywire configuration instructions.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 8

3. Skywire Configuration
3.1 Prerequisites
This section assumes that the three certificates from AWS IoT Console have been
downloaded, the modem is set up and registered on the network, and the CME Errors
are set to verbose (​AT+CMEE=2​)

3.2 Uploading Certificates
The first step in the configuration of the Skywire is to upload the certificates needed for
the TLS connection. These three certificates are the private key, client certificate and
the CA certificate.
The next two sections will lay out instructions for uploading the certificates in a Linux
and a Windows environment. ​Section 3.2.1​ details the Linux instructions, while ​Section
3.2.2​ contains the Windows instructions.

3.2.1 Certificate Uploading Using a Linux Environment
First open a terminal and navigate to the directory that contains the certificates that
were downloaded in ​Section 2.4​.
Next, establish a connection to the Nano using a preferred serial console. See the
Skywire Nano User Manual for more information on connecting to the nano.
Once the serial console has been set up properly, issue the following command to put
the Nano in airplane mode so certificates can be uploaded to it.
AT+CFUN=4
Now we will load the certificates onto the Nano.

1. Type in the AT command below, where ​x​ is the sec_tag (any number in
[0,2147483648]​, though we will use ​3,​ ​4,​ and ​5​ in our example later) and ​y​ is
replaced with ​0,​ ​1,​ or ​2​ depending on if the certificate being uploaded (rootCA,
device certificate, private key, respectively). ​Do not hit enter.
AT%CMNG=0,x,y,"

2. We need to transfer the cert exactly as it is from the computer to the Nano. The
easiest way is described below.

3. First, close the connection between the serial port and the terminal. Then, issue
the following command in the Linux terminal, where the name of the file is
replaced with the name of the certificate in question, and the destination is
replaced with the appropriate path to the serial line:

cat VeriSign-Class\3-Public-Primary-Certification-Authority-G5.pem > /dev/ttyACM1

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 9

This command will pipe the contents of the certificate to the serial line, which will
then be stored in a file on the Nano. Reopen the serial connection with the
modem, ​enter the closing quote​, and press ​Enter​ to finish uploading.
The serial line will respond with ​OK

Repeat the three steps above until each of the three files have been uploaded. Once
the files are confirmed to have been uploaded successfully, proceed to ​Section 3.2​.

3.2.2 Certificate Uploading Using a Windows Environment
First open the Windows command prompt and navigate to the directory that contains
the certificates that were downloaded in ​Section 2.4​. Type “​dir​" to list the contents of
the directory on individual lines. Take note of the file sizes of each of the relevant
certificates. This information will be needed shortly.
Next, establish a connection to the Nano using a preferred serial console. Once the
serial console has been set up properly, issue the following command to put the Nano in
airplane mode so certificates can be uploaded to it.
AT+CFUN=4
Now we will load the certificates onto the Nano.

1. Type in the AT command below, where ​x​ is the sec_tag (any number in
[0,2147483648]​, though we will use ​3,​ ​4,​ and ​5​ in our example later) and ​y​ is
replaced with ​0,​ ​1,​ or ​2​ depending on the certificate being uploaded (rootCA,
device certificate, private key, respectively). ​Do not hit enter.
AT%CMNG=0,x,y,"

2. We need to transfer the cert exactly as it is from the computer to the Nano. The
easiest way is described below.

3. First, close the connection between the serial port and the terminal emulator.
Next, issue the following command in the command prompt, where the name of
the file is replaced with the name of the certificate being uploaded, and the
"​COM10​" string is replaced with the proper COM port number.
copy 8da6fe87f3-certificate.pem \\.\COM10

This command will pipe the contents of the certificate to the serial line, which will
then be stored in a file on the Nano. Reopen the serial connection with the
modem, ​enter the closing quote​, and press ​Enter​ to finish uploading.
The serial line will respond with ​OK.

Repeat the three steps listed above until each of the three files have been uploaded.
After the files have been successfully uploaded, reattach the serial console to the
appropriate COM port. Once finished, proceed to ​Section 3.2​.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 10

3.3 Verifying the Certificate Uploads
Assume the files were uploaded to indices ​3,​ ​4,​ and ​5​, as in our example in section 4.
Again, the ​0,​ ​1,​ and ​2​ at the end of the command represent the type of the certificate
(rootCA, device certificate, private key, respectively). Verify that the rootCA upload was
successful by issuing the following command:
AT%CMNG=2,3,0

Note:​ you cannot read back the device certificate (index 4) nor the private key (index 5)
once entered. Thus, the commands ​AT%CMNG=2,4,0 ​and ​AT%CMNG=2,5,0​ will fail.

The terminal should respond with something similar to the following:
-----BEGIN CERTIFICATE-----

MIIE0zCCA7ugAwIBAgIQGNrRniZ96LtKIVjNzGs7SjANBgkqhkiG9w0BAQUFADCB

. . .

. . .

. . .

hnacRHr2lVz2XTIIM6RUthg/aFzyQkqFOFSDX9HoLPKsEdao7WNq

-----END CERTIFICATE-----
OK
It is possible for the files to have different formatting and not print exactly like above.
After each of the three files have been uploaded, reconnect to the network with
AT+CFUN=1​ and proceed to ​Section 3.4​.

3.4 TLS Profile Configuration
The next step is to configure the TLS socket on the Skywire. To do this, issue the
following command:

AT#XTLSSOCKET=<sock>,1,<host_url>,<sec_tag>[,<sec_tag>[,...]]

Where ​<sock>​ is the socket, which is an integer,​ <host_url>​ is the endpoint to
connect to, and ​<sec_tag>[,<sec_tag>[,...]]​ are the tags associated with the
certificates uploaded in Section 3.2.
For instance, the following command opens socket 1 to an Amazon AWS IoT Endpoint:

AT#XTLSSOCKET=1,1,"axxx....amazonaws.com",3,4,5

Once the above have been successfully completed, proceed to ​Section 4​.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 11

4. Connect to Amazon AWS
4.1 Connect to AWS Endpoint
After the Skywire has been configured properly, it is ready to establish a connection to
the AWS server.
First, find the endpoint for the “thing” that was created on the AWS website. To do this,
navigate to the “Things” page using the menu on the left-hand side of the AWS console
page. Click on the “thing” and then navigate to the “Interact” menu. The correct menu
should look something like this:

In the image above, the URL for the device endpoint has been enclosed in a red
rectangle. Record whatever URL shows up in this page, as it will be needed in the TLS
socket connection command.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 12

To open the TLS socket, issue the command below. Make sure to replace the device
endpoint in the AT command below with the endpoint that is unique to the AWS account
being used for this example.

AT#XTCPCONN=1,"axxx...amazonaws.com",8443

Where ​1​ specifies the TLS socket to use (configured in section 3.4) and ​8443​ is the port
to use.
After issuing this command, the modem will attempt to connect to the AWS endpoint. If
the connection is successful, the modem will return the following after some time:
OK

The above text indicates that the TLS handshake was successful and that the socket
has been connected.
After the TLS socket has been successfully connected. Proceed to ​Section 4.2​.

4.2 Sending an HTTPS Request

After successfully opening an TLS socket, use the following command to send an HTTP
request to the AWS endpoint:

AT#XTCPSEND=1

Where "​1​" is the number of the socket used for the TLS connection.

After issuing this AT command, the modem will wait for text to be entered into the
terminal. This text can either be pasted or typed into the terminal. After all of the text
has been entered or pasted in, press "​CTRL-Z​" to finalize the transmission. See the text
below for a sample HTTP POST request using the "​AT#XTCPSEND​" command.
Also, take note of the text in red in the table on the next page. Any of the red text
indicates key presses, and are not to be typed explicitly. These key press sequences
are crucial in order to format the POST command properly. Finally, bold text signifies
commands issued to the modem, and text pasted into the terminal.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 13

AT#XTCPSEND=1

> ​POST /things/AWS_TEST_THING/shadow HTTP/1.1​ ​CTRL+M​ ​CTRL+J

Host: axxx...amazonaws.com:8443​ ​CTRL+M​ ​CTRL+J

Content-Type: application/json​ ​CTRL+M​ ​CTRL+J

Content-Length: 123​ ​CTRL+M​ ​CTRL+J​ ​CTRL+M​ ​CTRL+J

{"state":{"desired":{"string1":"TLS Connect to AWS","string2":"Using the
built-in stack","string3":"of the Skywire Nano"}}}
CTRL-Z

#XTCPSEND: 331

OK

SOCK: 1,DTA

As can be seen in the text above, the POST command was entered into the terminal,
and the modem responded with "​OK​"​ ​indicating that the transmission succeeded. Also
note that the "​SOCK: 1,DTA​"​ URC indicates that an HTTP response was received.
Section 4.3​ will detail how to read this response.
Another important item to note is the "​Content-Length: 116​" line. In this case, the
value of "​116​" indicates that 116 bytes of data are being sent through the socket. This
helps the endpoint know how many bytes to consider as data. It is crucial to ensure that
this number is updated whenever the data JSON is edited.
Note​: Properly formatting the POST command can be challenging. Below are a few
pointers for correct POST command formatting and entry:

- It is usually impossible to paste the entire POST command all at once. Try
pasting the command in line-by-line as opposed to all at once.

- Press ​CTRL+M CTRL+J​ after each line of the POST command. This sequence
enters in a newline and carriage return character after each line.

- Press ​CTRL+M CTRL+J CTRL+M CTRL+J​ after the "​Content-Length: 116​" line.
In other words, insert two newline and carriage return sequences after this line.

- Replace the "​AWS_TEST_THING​" identifier with the unique name assigned during
the "thing" creation in ​Section 2.3​.

- Replace the AWS endpoint "​axxx...amazonaws.com:8443​" with the unique
endpoint associated with the Amazon AWS account in use.

- If the contents of the JSON are changed for any reason, the integer argument of
the "​Content-Length: 116​" line must be modified.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 14

- In other words, if the JSON is made larger or smaller, the total number of bytes
being sent must be recalculated, and the "​Content-Length: x​" line must be
updated with the new length.

4.3 Reading an HTTPS Response
To read an HTTP response, issue the following command:

AT#XTCPRECV=1,500,10

Where "​1​" is replaced by the number of the socket used for the TLS connection, ​500​ is
replaced by the number of bytes to read, and ​10​ is the timeout.
In the case of the sample ​POST​ command in ​Section 4.2​, the HTTP response follows.

AT#XTCPRECV=1,500,10
SSLRECV: 488,HTTP/1.1 200 OK
content-type: application/json
content-length: 72
date: Wed, 24 Jun 2020 19:59:48 GMT
x-amzn-RequestId: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
connection: keep-alive
<message>

OK

Note that multiple ​XTCPRECV​ statements can be sent. For instance, the output could look
like the following:

AT#XTCPRECV=1,50,10
SSLRECV: 50,HTTP/1.1 200 OK
content-type: application/

OK

AT#TCPRECV=1,433,10
json
content-length: 72
date: Wed, 24 Jun 2020 19:59:48 GMT
x-amzn-RequestId: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
connection: keep-alive
<message>

OK

Note that the max length readable at one time is ​1000​ bytes.

4.4 Closing a TLS Socket
To close an TLS socket, issue the following command:
AT#XTLSSOCKET=1,0

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 15

Where "​1​" is replaced with the number of the socket that was used for the TLS
connection. The modem should respond with ​OK​, unless the connection was already
terminated by the server. In this case, the modem will respond with an ​ERROR

5. Working Example: AWS IoT
This section is split up into two subsections. The first shows the preliminary set up of the
TLS socket and the second shows communication with AWS IoT. For AWS IoT, three
certs are needed: the rootCA, client certificate, and client private key.
Comments are in ​// blue
Note​: Minicom interprets CRLF differently, which is why the certs and HTTP requests
are formatted in an odd manner. The certs and HTTP requests were written into the
serial line using the ​cat​ method, described above in ​Section 3.2​.

5.1 Set Up

Welcome to minicom 2.7.1

OPTIONS: I18n
Compiled on Aug 13 2017, 15:25:34.
Port /dev/ttyACM1, 09:48:48

Press CTRL-A Z for help on special keys

AT#CFUN=4 ​// airplane mode
OK
// Write the rootCA
AT%CMNG=0,3,0,”-----BEGIN CERTIFICATE-----

MIIDWTCCAkGgAwIBAgIUJ+1lL9xBBn64vmI4yU9JRHZKBGYwDQYJKoZIhvcNAQE
L

BQAwTTFLMEkGA1UECwxCQW1hem9uIFdlYiBTZXJ2aWNlcyBPPUFtYXpvbi5jb20g

SW5jLiBMPVNlYXR0bGUgU1Q9V2FzaGluZ3RvbiBDPVVTMB4XDTIwM1
...

-
“
OK
// Write the client cert
AT%CMNG=0,4,1,”-----BEGIN CERTIFICATE-----

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 16

...
“
OK
// Write the client private key
AT%CMNG=0,5,2,"-----BEGIN RSA PRIVATE KEY----
...
“
OK
AT+CFUN=1
OK

5.2 Communication

// open SSL socket to unique endpoint
AT#XTLSSOCKET=1,1,"axxx....amazonaws.com",0,1,2
#XTLSSOCKET: 1,258
OK
AT#XTCPCONN=1,"axxx....amazonaws.com",8443
#XTCPCONN: 1
OK
AT#XTCPSEND=1 ​// Send data over socket
> GET /things/AWS_TEST_THING/shadow HTTP/1.1 ​// HTTP request to get the
current shadow
CTRL+M CTRL+J
CTRL+M CTRL+J CTRL+Z
#XTCPSEND: 37 ​// sent 37 bytes

OK
SOCK: 1,DTA ​// received data
AT#XTCPRECV=1,500,10
#XTCPRECV: 488,HTTP/1.1 200 OK
content-type: application/json
content-length: 299
date: Wed, 01 Jul 2020 17:59:05 GMT
x-amzn-RequestId: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
connection: keep-alive

{"state":{"desired":{"color":"blue","power":"off"},"reported":{"color":"blue","power":"off"}}
,"metadata":{"desired":{"color":{"timestamp":1593096284},"power":{"timestamp":15930
96284}},"reported":{"color":{"time}
OK

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 17

AT#XTCPSEND=1 ​// send data over socket
// this was inputted from a file with the cat/copy method described in section 3.2
> POST /things/AWS_TEST_THING/shadow HTTP/1.1 ​// HTTP request to update the
shadow
 Host: axxx...amazonaws.com
 Content-Type:
application/json

Content-Length: 53

{"state":{"reported":{"color":"blue","power":"off"}}} ​CTRL+Z

OK

SOCK: 1,DTA ​// received data
AT#XTCPRECV=1,369,10 ​// read 369 bytes from the socket
#XTCPRECV: 369,HTTP/1.1 200 OK
content-type: application/json
content-length: 180
date: Thu, 25 Jun 2020 15:21:23 GMT
x-amzn-RequestId: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
connection: keep-alive

{"state":{"reported":{"color":"blue","power":"off"}},"metadata":{"reported":{"color":{"time
stamp":1593098483},"power":{"timestamp":1593098483}}},"version":4,"timestamp":15
93098483}

OK
AT#XTCPSEND=1 ​// send data over the socket
> GET /things/AWS_TEST_THING/shadow HTTP/1.1 ​// HTTP request to get the
current shadow
CTRL+M​ ​CTRL+J
CTRL+M​ ​CTRL+J​ ​CTRL+Z

OK

SOCK: 1,DTA ​// received data
AT#XTCPRECV=1,488,10 ​// read 488 bytes from the socket
#XTCPRECV: 488,HTTP/1.1 200 OK
content-type: application/json
content-length: 299
date: Thu, 25 Jun 2020 15:21:42 GMT

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 18

x-amzn-RequestId: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx
connection: keep-alive

{"state":{"desired":{"color":"blue","power":"off"},"reported":{"color":"blue","power":"off"}}
,"metadata":{"desired":{"color":{"timestamp":1593096284},"power":{"timestamp":15930
96284}},"reported":{"color":{"timestamp":1593098483},"power":{"timestamp":1593098
483}}},"version":4,"timestamp":1593098502}

OK
AT#XTLSSOCKET=1,0 ​// close the socket
#XTLSSOCKET: 0
OK

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 19

6. Troubleshooting
6.1 HTTP Response Codes
6.1.1 403 Forbidden

If a connection can be established, but the AWS response to the "​GET​" command is
"​403 Forbidden​", make sure that the current AWS policy is set to allow all IoT actions.
This can be done through the AWS IoT Console.

6.1.2 400 Bad Request

If a connection can be established, but the AWS response to the "​GET​" or "​POST​"
command is "​400 Bad Request​", make sure the syntax of the "​GET​" or "​POST​"
command is correct.

6.1.3 404 Not Found

If a connection can be established, but the AWS response to the "​GET​" or "​POST​"
command is "​404 Not Found​", the HTTP request cannot be fulfilled because the
resource does not exist. For instance, there might be a typo, like

GET /things/TCNAG/shadow HTTP/1.1

instead of
GET /things/AWS_TEST_THING/shadow HTTP/1.1

6.2 Verify Credentials

If for some reason the credentials for the AWS connection do not work, ​OpenSSL​ can
be used to check their validity. This process is helpful for narrowing down the source of
the connection issue.

6.2.1 Testing AWS Credentials using OpenSSL

To test credentials with OpenSSL, first ensure that OpenSSL is properly installed on a
Linux or Windows system. Next, navigate to the directory that contains the certificates
that are being tested. Issue the following command to attempt a connection to AWS:

openssl s_client -servername​ axxx...amazonaws.com​ -connect
axxx...amazonaws.com​:8443 -CAfile ​VeriSign-Class\
3-Public-Primary-Certification-Authority-G5.pem​ -cert
8da6fe87f3-certificate.pem.crt​ -key ​8da6fe87f3-private.pem.key​ -certform PEM
-keyform PEM

Be sure to replace any of the text in bold with unique certificate names, and the unique
AWS endpoint URL.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 20

https://www.openssl.org/

If the connection is successful, the terminal should respond with "​CONNECTED​" followed
by some information about the connection, including the server certificate. To further
test the connection, type the following command, followed by the sequence "​CTRL+M,
CTRL+J​":
GET /things/AWS_TEST_THING/shadow HTTP/1.1

Remember to replace the "​AWS_TEST_THING​" string with the unique "thing" name
assigned in ​Section 2.3​.
The server should respond with something similar to:

HTTP/1.1 200 OK

content-type: application/json

content-length: 385

date: Tue, 24 Jul 2018 22:35:57 GMT

x-amzn-RequestId: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

connection: keep-alive

{"state":{"desired":{"string1":"TLS Connect to AWS","string2":"Using
the built-in stack","string3":"of the Nano"},"delta":{"string1":"TLS
Connect to AWS","string2":"Using the built-in stack","string3":"of
the
Nano"}},"metadata":{"desired":{"string1":{"timestamp":1532463231},"st
ring2":{"timestamp":1532463231},"string3":{"timestamp":1532463231}}},
"version":19,"timestamp":1532471757}

If a valid connection can be established, then it is safe to say that the certificates are
indeed valid, and thus are not the source of the problem.

PN 1002555 rev 2 © NimbeLink Corp. 2020. All rights reserved. 21

